

'समानो मन्त्रः समितिः समानी' UNIVERSITY OF NORTH BENGAL B.Sc. Honours 5th Semester Examination, 2021

DSE-P2-PHYSICS

The figures in the margin indicate full marks. All symbols are of usual significance.

Candidates should also ensure that the chosen section in the paper DSE-2 is different from the chosen section in the paper DSE-1.

The question paper contains paper DSE-2A, DSE-2B and DSE-2C. The candidates are required to answer any *one* from *three* sections. Candidates should mention it clearly on the Answer Book.

DSE-2A

NANO-MATERIALS AND APPLICATIONS

Time Allotted: 2 Hours

Full Marks: 40

GROUP-A

1.		Answer any <i>five</i> questions from the following:	$1 \times 5 = 5$
	(a)	Which factor causes the properties of nano-materials to differ significantly from other materials?	1
	(b)	Which nano-materials is used for cutting tools?	1
	(c)	A carbon monoxide sensor made of zinconia uses which characteristic to detect any charge?	1
	(d)	If the atomic numbers of zirconium, molybdenum, palladium and tin are 40, 42, 46 and 50 respectively, which will be suitable filter for X-radiation from molybdenum?	1
	(e)	Define Band gap.	1
	(f)	What do you mean by nanowires?	1
	(g)	Define grain boundary of a nanoparticle.	1
	(h)	What is a quantum-dot laser?	1

GROUP-B

		Answer any three questions from the following	$5 \times 3 = 15$
2.	(a)	Define Bragg's law.	2
	(b)	Find the longest wavelength that can be used to analyse a NaCl crystal of	3
		interplanar spacing 0.281 nm between its principal planes in first order.	

UG/CBCS/B.Sc./Hons./5th Sem./Physics/PHYSDSE2/2021

3.	(a) (b)	Distinguish between direct and indirect band gap. What is exciton? Explain.	3 2
4.		Discuss in detail application of nanosensor systems.	5
5.		Explain in detail why band gap of nano-materials increases with size reduction.	5
6.		Discuss in detail different types of ball-milling and their advantages.	5

GROUP-C

	Answer any two questions from the following	$10 \times 2 = 20$
7.	Discuss several bottom up approaches to synthesize nano-materials.	10
8.	List out applications of nano-materials and neatly explain them.	10
9. (a)	Explain exciton generation and its transport in quantum dots.	6
(b)	What is the difference between SEM and STM?	4
10.(a)	Explain Coulomb interactions in a dielectric quantum nanostructure.	4
(b)	Calculate the self energy and charging energy when the quantum dot is embedded in a semi-conductor with large band gap.	3+3

DSE-2B

ADVANCED MATHEMATICAL PHYSICS-I

Full Marks: 40

Time Allotted: 2 Hours

GROUP-A

1.	Answer any <i>five</i> questions from the following:	$1 \times 5 = 5$
	(a) Find the Laplace transform of the signal	1
	$x(t) = t e^{-2 t }.$	
	(b) Draw the graph of $\theta(t-a) - \theta(t-b)$. θ is defined as step functions <i>a</i> and <i>b</i> are arbitrary constant.	1
	(c) Show that $\vec{a} = 2\hat{i} + 3\hat{i} + 5\hat{k}$ and $\vec{b} = 6\hat{i} + 9\hat{i} + 15\hat{k}$ do not form any closed	1

- (c) Show that $\vec{a} = 2\vec{i} + 3\vec{j} + 5k$ and $b = 6\vec{i} + 9\vec{j} + 15k$ do not form any closed surface.
- (d) If A is a $(n \times n)$ antisymmetric matrix, show that |A|=0 when n is an odd 1 integer number.

UG/CBCS/B.Sc./Hons./5th Sem./Physics/PHYSDSE2/2021

(e) Find the dimension of the subspace of $M_{2\times 2}$ spanned by,

$$\begin{pmatrix} 1 & -5 \\ -4 & 2 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 1 \\ -1 & 5 \end{pmatrix}$, and $\begin{pmatrix} 2 & -4 \\ -5 & -7 \end{pmatrix}$

- (f) Two directions \vec{n} and \vec{n}' are defined in a spherical coordinate system by the angles θ , α and θ' , α respectively. Find the cosine of the angle between them.
- (g) Write down the basis of a rank-2 tensor in 2-dimension.
- (h) Calculate δ_{ii} in 3-dimension.

GROUP-B

	Answer any three questions from the following	$5 \times 3 = 15$
2.	Obtain Inverse Laplace Transform of	5
	$\frac{s}{1+s^2+s^4}$	

3.	(a)	Define a linear functional on a vector space.	2
	(b)	Consider the vector space $\mathbb{R}[x]$ of all polynomials over the field \mathbb{R} of real	3
		numbers. Show that the mapping $f(x) \to \int_{0}^{1} f(x) dx$; $f(x) \in \mathbb{R}[x]$ is a linear	
		functional on $\mathbb{R}[x]$.	
4.	(a)	Write down the condition on which a subset of a vector space can be called linearly dependent.	2
	(b)	Check the linear independency of the set, $S = \{(1, 3, -4, 2), (2, 2, -4, 0), (1, -3, 2, -4), (-1, 0, 1, 0)\}$ in \mathbb{R}^4 .	3
5.	(a)	Construct a scalar from the tensor A_{kl}^{ij} .	3
	(b)	Define metric tensor.	2
6.	(a)	Find out the basis transformation matrix (S) in 3-D when the Cartesian coordinate is rotated with an angle θ about x-axis.	2
	(b)	The vector field \vec{a} satisfies $\nabla \cdot \vec{a} = 0$ inside some volume V and $\vec{a} \cdot \hat{n} = 0$ on the	3

(b) The vector field \vec{a} satisfies $\nabla \cdot \vec{a} = 0$ inside some volume *V* and $\vec{a} \cdot \hat{n} = 0$ on the boundary surface *S*. \hat{n} is the unit vector along \vec{S} . By considering the divergence theorem applied to $T_{ij} = x_i a_j$, show that $\int_V \vec{a} \, dV = 0$.

1

1

GROUP-C

Answer any *two* questions from the following $10 \times 2 = 20$

7. Solve the initial value problem

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = 0$$

Where,
$$y = 2$$
 at $x = 0$, $\frac{dy}{dx} = -4$ at $x = 0$.

- 8. (a) What do you mean by the linear 'dimension' of a vector space?
 (b) Justify whether every subspace of a finite dimensional vector space is finite dimensional or not.
 - (c) Find the dimension of the vector space formed by all (2×2) matrices.
 - (d) Explain with examples whether the dimension of a vector space depends on its field or not. 2

9. Let, $A = \begin{bmatrix} 1 & 2 & 1 & 0 & 0 \\ 1 & 2 & 2 & 2 & 3 \\ -1 & -2 & 0 & 2 & 3 \end{bmatrix}$.

- (a) Solve Ax = 0 and characterize the null space through its basis.
- (b) What is the rank of *A*? What are the dimensions of the column space, row space 2 and left null space of *A*?
- (c) Find the complete solution of Ax = b, where $b = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$. 3
- (d) Find the conditions on b_1 , b_2 , b_3 that ensure $Ax = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ has a solution. 2
- 10.(a) Show that, in general coordinates, the quantities $\frac{\partial v^i}{\partial u^j}$ do not form the 3 components of a tensor.
 - (b) Prove that δ_i^i is a mixed second rank tensor.
 - (c) A covariant rank-1 tensor has components xy, $2y-z^2$, xz in rectangular 5 coordinates. Find its covariant components in spherical coordinates.

10

3

3

DSE-2C

CLASSICAL DYNAMICS

Time Allotted: 2 Hours

Full Marks: 60

GROUP-A

1.	Answer any <i>four</i> questions from the following:	3×4 = 12
(a)	Prove that a possible Lagrangian for a free particle is,	3
	$L = \dot{q}^2 - q\dot{q}$	
(b)	What are the Lagrange's equations for a non-conservative system?	3
(c)	What do you mean by stable and unstable equilibrium? Give examples.	3
(d)	Discuss the importance of invariant interval in special theory of relativity.	3
(e)	What are space-like, time-like intervals and light-like intervals?	3
(f)	What is the meaning of critical velocity and turbulent motion?	3

GROUP-B

	Answer any <i>four</i> questions from the following	$6 \times 4 = 24$
2.	The Lagrangian of an anharmonic oscillator is, $L(x, \dot{x}) = \frac{1}{2}\dot{x}^2 - \frac{1}{2}\omega^2 x^2 - dx^3 + \beta x\dot{x}^2$. 6
3.	Show that the motion of a particle under central force is planar.	6
4.	A particle moving under a central force describes a spiral orbit given by $r = ae^{b\theta}$, where <i>a</i> , <i>b</i> are constants. Obtain the force law.	6
5. (a)	What do you mean by light cone? Explain in 3-dimensional space.	3
(b)	Explain longitudinal Doppler effect using 4-vector perspective.	3
6.	Obtain the normal coordinates of a system of which the Lagrangian is given by	6
	$L = \frac{1}{2}(m_1 \dot{x}^2 + m_2 \dot{y}^2) + \beta \dot{x} \dot{y} - \frac{1}{2}(x^2 + y^2) \cdot m_1, m_2 \text{ and } \beta \text{ being constants.}$	
7.	Obtain the equation of continuity for a fluid flow.	6

GROUP-C

	Answer any <i>two</i> questions from the following	$12 \times 2 = 24$
8. (a)	Explain the meaning of conjugation space.	2
(b)	Show that symmetry in the Lagrangian leads to different constants of motion.	10

9. Two masses, each equal to *m* are connected by massless springs of spring constant *k*, such that they can freely slide on a smooth horizontal surface. The ends of the spring are fixed to vertical walls.

Determine:

(a)	the normal frequencies.	4
(b)	normal modes of vibration	4
(c)	the normal coordinates.	4
10.(a)	What do you mean by Minkowski space and define what are world lines?	4
(b)	Explain the geometric interpretation of length contraction and time dilation using space time diagrams.	8
11.(a)	A central attractive force varies as r^m . The velocity of a particle in a circular orbit of radius r is twice the escape velocity from the same radius. Find m .	4

(b) Show that ordinary 3-vector momentum is not conserved under Lorentz transformation whereas the 4-vector momentum is conserved under the Lorentz transformation.

_×__